Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 173
1.
Mol Brain ; 15(1): 76, 2022 09 05.
Article En | MEDLINE | ID: mdl-36064580

Loss of function mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MECP2) cause Rett syndrome (RTT), a postnatal neurological disorder. The loss of motor function is an important clinical feature of RTT that manifests early during the course of the disease. RTT mouse models with mutations in the murine orthologous Mecp2 gene replicate many human phenotypes, including progressive motor impairments. However, relatively little is known about the changes in circuit function during the progression of motor deficit in this model. As the motor cortex is the key node in the motor system for the control of voluntary movement, we measured firing activity in populations of motor cortical neurons during locomotion on a motorized wheel-treadmill. Different populations of neurons intermingled in the motor cortex signal different aspects of the locomotor state of the animal. The proportion of running selective neurons whose activity positively correlates with locomotion speed gradually decreases with weekly training in wild-type mice, but not in Mecp2-null mice. The fraction of rest-selective neurons whose activity negatively correlates with locomotion speed does not change with training in wild-type mice, but is higher and increases with the progression of locomotion deficit in mutant mice. The synchronization of population activity that occurs in WT mice with training did not occur in Mecp2-null mice, a phenotype most clear during locomotion and observable across all functional cell types. Our results could represent circuit-level biomarkers for motor regression in Rett syndrome.


Locomotion , Methyl-CpG-Binding Protein 2 , Motor Cortex , Animals , Disease Models, Animal , Learning/physiology , Locomotion/genetics , Methyl-CpG-Binding Protein 2/deficiency , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/genetics , Motor Cortex/metabolism , Phenotype , Rett Syndrome/genetics , Rett Syndrome/metabolism
2.
BMB Rep ; 55(5): 238-243, 2022 May.
Article En | MEDLINE | ID: mdl-35410641

Autism or autism spectrum disorder (ASD) is a behavioral syndrome characterized by persistent deficits in social interaction, and repetitive patterns of behavior, interests, or activities. The gene encoding Methyl-CpG binding protein 2 (MeCP2) is one of a few exceptional genes of established causal effect in ASD. Although genetically engineered mice studies may shed light on how MeCP2 loss affects synaptic activity patterns across the whole brain, such studies are not considered practical in ASD patients due to the overall level of impairment, and are technically challenging in mice. For the first time, we show that hippocampal MeCP2 knockdown produces behavioral abnormalities associated with autism-like traits in rats, providing a new strategy to investigate the efficacy of therapeutics in ASD. Ketamine, an N-Methyl-D-aspartate (NMDA) blocker, has been proposed as a possible treatment for autism. Using the MeCP2 knockdown rats in conjunction with a rat model of valproic acid (VPA)-induced ASD, we examined gene expression and ASD behaviors upon ketamine treatment. We report that the core symptoms of autism in MeCP2 knockdown rats with social impairment recovered dramatically following a single treatment with ketamine. [BMB Reports 2022; 55(5): 238-243].


Autism Spectrum Disorder , Autistic Disorder , Ketamine , Methyl-CpG-Binding Protein 2 , Animals , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autistic Disorder/drug therapy , Autistic Disorder/genetics , Autistic Disorder/metabolism , Disease Models, Animal , Hippocampus/metabolism , Ketamine/pharmacology , Methyl-CpG-Binding Protein 2/deficiency , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice , Rats
3.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article En | MEDLINE | ID: mdl-34686597

Complex body movements require complex dynamics and coordination among neurons in motor cortex. Conversely, a long-standing theoretical notion supposes that if many neurons in motor cortex become excessively synchronized, they may lack the necessary complexity for healthy motor coding. However, direct experimental support for this idea is rare and underlying mechanisms are unclear. Here we recorded three-dimensional body movements and spiking activity of many single neurons in motor cortex of rats with enhanced synaptic inhibition and a transgenic rat model of Rett syndrome (RTT). For both cases, we found a collapse of complexity in the motor system. Reduced complexity was apparent in lower-dimensional, stereotyped brain-body interactions, neural synchrony, and simpler behavior. Our results demonstrate how imbalanced inhibition can cause excessive synchrony among movement-related neurons and, consequently, a stereotyped motor code. Excessive inhibition and synchrony may underlie abnormal motor function in RTT.


Brain/physiopathology , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/physiology , Motor Activity/genetics , Motor Activity/physiology , Rett Syndrome/genetics , Rett Syndrome/physiopathology , Action Potentials/genetics , Action Potentials/physiology , Animals , Disease Models, Animal , Electrophysiological Phenomena , Female , Gene Knockdown Techniques , Humans , Male , Methyl-CpG-Binding Protein 2/deficiency , Models, Neurological , Motor Cortex/physiopathology , Motor Neurons/physiology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Stereotyped Behavior/physiology
4.
J Clin Invest ; 131(16)2021 08 16.
Article En | MEDLINE | ID: mdl-34228646

Perineuronal nets (PNNs), a specialized form of extracellular matrix, are abnormal in the brains of people with Rett syndrome (RTT). We previously reported that PNNs function to restrict synaptic plasticity in hippocampal area CA2, which is unusually resistant to long-term potentiation (LTP) and has been linked to social learning in mice. Here we report that PNNs appear elevated in area CA2 of the hippocampus of an individual with RTT and that PNNs develop precociously and remain elevated in area CA2 of a mouse model of RTT (Mecp2-null). Further, we provide evidence that LTP could be induced at CA2 synapses prior to PNN maturation (postnatal day 8-11) in wild-type mice and that this window of plasticity was prematurely restricted at CA2 synapses in Mecp2-null mice. Degrading PNNs in Mecp2-null hippocampus was sufficient to rescue the premature disruption of CA2 plasticity. We identified several molecular targets that were altered in the developing Mecp2-null hippocampus that may explain aberrant PNNs and CA2 plasticity, and we discovered that CA2 PNNs are negatively regulated by neuronal activity. Collectively, our findings demonstrate that CA2 PNN development is regulated by Mecp2 and identify a window of hippocampal plasticity that is disrupted in a mouse model of RTT.


CA2 Region, Hippocampal/physiopathology , Methyl-CpG-Binding Protein 2/deficiency , Rett Syndrome/physiopathology , Animals , CA2 Region, Hippocampal/pathology , Disease Models, Animal , Extracellular Matrix/pathology , Extracellular Matrix/physiology , Humans , Long-Term Potentiation/genetics , Long-Term Potentiation/physiology , Male , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/physiology , Mice , Mice, Knockout , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Neuronal Plasticity/genetics , Neuronal Plasticity/physiology , Neurons , Rett Syndrome/genetics , Rett Syndrome/pathology
5.
Hum Mol Genet ; 30(22): 2161-2176, 2021 11 01.
Article En | MEDLINE | ID: mdl-34230964

Severe respiratory impairment is a prominent feature of Rett syndrome, an X-linked disorder caused by mutations in methyl CpG-binding protein 2 (MECP2). Despite MECP2's ubiquitous expression, respiratory anomalies are attributed to neuronal dysfunction. Here, we show that neutral lipids accumulate in mouse Mecp2-mutant lungs, whereas surfactant phospholipids decrease. Conditional deletion of Mecp2 from lipid-producing alveolar epithelial 2 (AE2) cells causes aberrant lung lipids and respiratory symptoms, whereas deletion of Mecp2 from hindbrain neurons results in distinct respiratory abnormalities. Single-cell RNA sequencing of AE2 cells suggests lipid production and storage increase at the expense of phospholipid synthesis. Lipid production enzymes are confirmed as direct targets of MECP2-directed nuclear receptor co-repressor 1/2 transcriptional repression. Remarkably, lipid-lowering fluvastatin improves respiratory anomalies in Mecp2-mutant mice. These data implicate autonomous pulmonary loss of MECP2 in respiratory symptoms for the first time and have immediate impacts on patient care.


Lipid Metabolism , Lung/metabolism , Lung/physiopathology , Methyl-CpG-Binding Protein 2/deficiency , Rett Syndrome/etiology , Rett Syndrome/metabolism , Animals , Biomarkers , Disease Models, Animal , Disease Susceptibility , Fluvastatin/pharmacology , Lipid Metabolism/drug effects , Lipogenesis/genetics , Male , Metabolic Networks and Pathways , Mice , Mice, Knockout , Mutation , Nuclear Receptor Co-Repressor 1 , Phenotype , Protein Binding , Pulmonary Surfactants/metabolism , Rett Syndrome/diagnosis , Rett Syndrome/drug therapy
6.
Int J Mol Sci ; 22(10)2021 May 18.
Article En | MEDLINE | ID: mdl-34069993

Rett syndrome (RTT) is a rare neurodevelopmental disorder that is usually caused by mutations of the MECP2 gene. Patients with RTT suffer from severe deficits in motor, perceptual and cognitive domains. Electroencephalogram (EEG) has provided useful information to clinicians and scientists, from the very first descriptions of RTT, and yet no reliable neurophysiological biomarkers related to the pathophysiology of the disorder or symptom severity have been identified to date. To identify consistently observed and potentially informative EEG characteristics of RTT pathophysiology, and ascertain areas most worthy of further systematic investigation, here we review the literature for EEG abnormalities reported in patients with RTT and in its disease models. While pointing to some promising potential EEG biomarkers of RTT, our review identify areas of need to realize the potential of EEG including (1) quantitative investigation of promising clinical-EEG observations in RTT, e.g., shift of mu rhythm frequency and EEG during sleep; (2) closer alignment of approaches between patients with RTT and its animal models to strengthen the translational significance of the work (e.g., EEG measurements and behavioral states); (3) establishment of large-scale consortium research, to provide adequate Ns to investigate age and genotype effects.


Electroencephalography , Rett Syndrome/diagnosis , Rett Syndrome/physiopathology , Animals , Biomarkers , Disease Models, Animal , Disease Progression , Electrophysiological Phenomena , Female , Gene Expression Regulation , Humans , Male , Methyl-CpG-Binding Protein 2/deficiency , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/physiology , Mice , Mutation , Phenotype , Rats , Rett Syndrome/genetics , Translational Research, Biomedical
7.
Elife ; 102021 01 26.
Article En | MEDLINE | ID: mdl-33494858

Rett syndrome is a devastating childhood neurological disorder caused by mutations in MECP2. Of the many symptoms, motor deterioration is a significant problem for patients. In mice, deleting Mecp2 from the cortex or basal ganglia causes motor dysfunction, hypoactivity, and tremor, which are abnormalities observed in patients. Little is known about the function of Mecp2 in the cerebellum, a brain region critical for motor function. Here we show that deleting Mecp2 from the cerebellum, but not from its neuronal subtypes, causes a delay in motor learning that is overcome by additional training. We observed irregular firing rates of Purkinje cells and altered heterochromatin architecture within the cerebellum of knockout mice. These findings demonstrate that the motor deficits present in Rett syndrome arise, in part, from cerebellar dysfunction. For Rett syndrome and other neurodevelopmental disorders, our results highlight the importance of understanding which brain regions contribute to disease phenotypes.


Cerebellum/chemistry , Gene Deletion , Learning , Methyl-CpG-Binding Protein 2/genetics , Motor Activity/genetics , Neurons/chemistry , Rett Syndrome/genetics , Animals , Disease Models, Animal , Humans , Male , Methyl-CpG-Binding Protein 2/deficiency , Mice , Mice, Knockout , Time Factors
8.
Protein Cell ; 12(8): 639-652, 2021 08.
Article En | MEDLINE | ID: mdl-32851591

Rett syndrome (RTT) is a progressive neurodevelopmental disorder, mainly caused by mutations in MeCP2 and currently with no cure. We report here that neurons from R106W MeCP2 RTT human iPSCs as well as human embryonic stem cells after MeCP2 knockdown exhibit consistent and long-lasting impairment in maturation as indicated by impaired action potentials and passive membrane properties as well as reduced soma size and spine density. Moreover, RTT-inherent defects in neuronal maturation could be pan-neuronal and occurred in neurons with both dorsal and ventral forebrain features. Knockdown of MeCP2 led to more severe neuronal deficits as compared to RTT iPSC-derived neurons, which appeared to retain partial function. Strikingly, consistent deficits in nuclear size, dendritic complexity and circuitry-dependent spontaneous postsynaptic currents could only be observed in MeCP2 knockdown neurons but not RTT iPSC-derived neurons. Both neuron-intrinsic and circuitry-dependent deficits of MeCP2-deficient neurons could be fully or partially rescued by re-expression of wild type or T158M MeCP2, strengthening the dosage dependency of MeCP2 on disease phenotypes and also the partial function of the mutant. Our findings thus reveal stable neuronal maturation deficits and unexpectedly, graded sensitivities of neuron-inherent and neural transmission phenotypes towards the extent of MeCP2 deficiency, which is informative for future therapeutic development.


Methyl-CpG-Binding Protein 2/genetics , Neural Stem Cells/metabolism , Neurons/metabolism , Prosencephalon/metabolism , Rett Syndrome/genetics , Action Potentials/genetics , Base Sequence , Cell Differentiation , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Dosage , Gene Expression , Gene Knockdown Techniques , Genetic Complementation Test , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Methyl-CpG-Binding Protein 2/deficiency , Neural Stem Cells/pathology , Neurons/pathology , Phenotype , Primary Cell Culture , Prosencephalon/pathology , Rett Syndrome/metabolism , Rett Syndrome/pathology , Severity of Illness Index , Synaptic Transmission
9.
JCI Insight ; 6(3)2021 02 08.
Article En | MEDLINE | ID: mdl-33373327

Impairment of the GABAergic system has been reported in epilepsy, autism, attention deficit hyperactivity disorder, and schizophrenia. We recently demonstrated that ataxia telangiectasia mutated (ATM) directly shapes the development of the GABAergic system. Here, we show for the first time to our knowledge how the abnormal expression of ATM affects the pathological condition of autism. We exploited 2 different animal models of autism, the methyl CpG binding protein 2-null (Mecp2y/-) mouse model of Rett syndrome and mice prenatally exposed to valproic acid, and found increased ATM levels. Accordingly, treatment with the specific ATM kinase inhibitor KU55933 (KU) normalized molecular, functional, and behavioral defects in these mouse models, such as (a) delayed GABAergic development, (b) hippocampal hyperexcitability, (c) low cognitive performances, and (d) social impairments. Mechanistically, we demonstrate that KU administration to WT hippocampal neurons leads to (a) higher early growth response 4 activity on Kcc2b promoter, (b) increased expression of Mecp2, and (c) potentiated GABA transmission. These results provide evidence and molecular substrates for the pharmacological development of ATM inhibition in autism spectrum disorders.


Autism Spectrum Disorder/drug therapy , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/psychology , Behavior, Animal/drug effects , Behavior, Animal/physiology , DNA Repair , Disease Models, Animal , Female , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Male , Methyl-CpG-Binding Protein 2/deficiency , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Morpholines/pharmacology , Pregnancy , Prenatal Exposure Delayed Effects , Protein Kinase Inhibitors/pharmacology , Pyrones/pharmacology , Rett Syndrome/drug therapy , Rett Syndrome/physiopathology , Rett Syndrome/psychology , Symporters/genetics , Symporters/metabolism , Valproic Acid/toxicity , K Cl- Cotransporters
10.
Neurobiol Dis ; 149: 105235, 2021 02.
Article En | MEDLINE | ID: mdl-33383186

Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder that is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). RTT is the second most prevalent genetic cause of intellectual disability in girls, and there is currently no cure for the disease. We have previously shown that gene therapy using a self-complementary AAV9 viral vector expressing a codon-optimized Mecp2 version (AAV9-MCO) significantly improved symptoms and increased survival in male Mecp2-deficient mice. Here, we pursued our studies and investigated the safety and efficacy of long-term gene therapy in the genetically relevant RTT mouse model: the heterozygous (HET) Mecp2 deficient female mouse. These mice were injected with the AAV9-MCO vector through the tail vein and an array of behavioral tests was performed. At 16- and 30-weeks post-injection, this treatment was able to rescue apneas and improved the spontaneous locomotor deficits and circadian locomotor activity in Mecp2 HET mice treated with AAV9-MCO at a dose of 5 × 1011 vg/mouse. To examine whether a higher dose of vector could result in increased improvements, we injected Mecp2 HET mice with a higher MCO vector dose (1012 vg/mouse), which resulted in some severe, sometimes lethal, side effects. In order to confirm these effects, a new cohort of Mecp2 HET mice were administered increasing doses of MCO vector (1011, 5 × 1011 and 1012 vg/mouse). Again, two weeks after vector administration, some Mecp2 HET mice were found dead while others displayed severe side effects and had to be euthanized. These deleterious effects were not observed in Mecp2 HET mice injected with a high dose of AAV9-GFP and were directly proportionate to vector dosage (0, 23 or 54% mortality at an AAV9-MCO dose of 1011, 5 × 1011, 1012 vg/mouse, respectively), and no such lethality was observed in wild-type (WT) mice. In the Mecp2 HET mice treated with the high and medium AAV9-MCO doses, blood chemistry analysis and post-mortem histology showed liver damage with drastically elevated levels of liver transaminases and disorganized liver architecture. Apoptosis was confirmed by the presence of TUNEL- and cleaved-caspase 3-positive cells in the Mecp2 HET mice treated with the higher doses of AAV9-MCO. We then studied the involvement of the unfolded protein response (UPR) in triggering apoptosis since it can be activated by AAV vectors. Increased expression of the C/EBP homologous protein (CHOP), one of UPR downstream effectors, was confirmed in Mecp2 HET mice after vector administration. The toxic reaction seen in some treated mice indicates that, although gene therapy for RTT improved breathing deficits observed in Mecp2 HET mice, further studies are needed to better understand the underlying mechanisms and caution must be exercised before similar attempts are undertaken in female Rett patients.


Adenoviridae , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Methyl-CpG-Binding Protein 2/deficiency , Rett Syndrome/metabolism , Rett Syndrome/therapy , Adenoviridae/genetics , Administration, Intravenous , Animals , Disease Models, Animal , Female , Genetic Vectors/genetics , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Rett Syndrome/genetics
11.
Neuropharmacology ; 176: 108221, 2020 10 01.
Article En | MEDLINE | ID: mdl-32652084

Motor skill is a specific area of disability of Rett syndrome (RTT), a rare disorder occurring almost exclusively in girls, caused by loss-of-function mutations of the X-linked methyl-CpG-binding protein2 (MECP2) gene, encoding the MECP2 protein, a member of the methyl-CpG-binding domain nuclear proteins family. Brain 5-HT, which is defective in RTT patients and Mecp2 mutant mice, regulates motor circuits and SSRIs enhance motor skill learning and plasticity. In the present study, we used heterozygous (Het) Mecp2 female and Mecp2-null male mice to investigate whether fluoxetine, a SSRI with pleiotropic effects on neuronal circuits, rescues motor coordination deficits. Repeated administration of 10 mg/kg fluoxetine fully rescued rotarod deficit in Mecp2 Het mice regardless of age, route of administration or pre-training to rotarod. The motor improvement was confirmed in the beam walking test while no effect was observed in the hanging-wire test, suggesting a preferential action of fluoxetine on motor coordination. Citalopram mimicked the effects of fluoxetine, while the inhibition of 5-HT synthesis abolished the fluoxetine-induced improvement of motor coordination. Mecp2 null mice, which responded poorly to fluoxetine in the rotarod, showed reduced 5-HT synthesis in the prefrontal cortex, hippocampus and striatum, and reduced efficacy of fluoxetine in raising extracellular 5-HT as compared to female mutants. No sex differences were observed in the ability of fluoxetine to desensitize 5-HT1A autoreceptors upon repeated administration. These findings indicate that fluoxetine rescues motor coordination in Mecp2 Het mice through its ability to enhance brain 5-HT and suggest that drugs enhancing 5-HT neurotransmission may have beneficial effects on motor symptoms of RTT.


Brain/metabolism , Fluoxetine/therapeutic use , Methyl-CpG-Binding Protein 2/deficiency , Psychomotor Performance/drug effects , Rett Syndrome/metabolism , Serotonin/metabolism , Animals , Brain/drug effects , Female , Fluoxetine/pharmacology , Male , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Psychomotor Performance/physiology , Rett Syndrome/drug therapy , Rett Syndrome/genetics , Rotarod Performance Test/methods , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/therapeutic use
12.
Int J Mol Sci ; 20(20)2019 Oct 18.
Article En | MEDLINE | ID: mdl-31635390

The deletion of Mecp2, the gene encoding methyl-CpG-binding protein 2, causes severe breathing defects and developmental anomalies in mammals. In Mecp2-null mice, impaired GABAergic neurotransmission is demonstrated at the early stage of life. GABAergic dysfunction in neurons in the rostral ventrolateral medulla (RVLM) is considered as a primary cause of breathing abnormality in Mecp2-null mice, but its molecular mechanism is unclear. Here, we report that mRNA expression levels of Gad1, which encodes glutamate decarboxylase 67 (GAD67), in the RVLM of Mecp2-null (Mecp2-/y, B6.129P2(C)-Mecp2tm1.1Bird/J) mice is closely related to the methylation status of its promoter, and valproate (VPA) can upregulate transcription from Gad1 through epigenetic mechanisms. The administration of VPA (300 mg/kg/day) together with L-carnitine (30 mg/kg/day) from day 8 to day 14 after birth increased Gad1 mRNA expression in the RVLM and reduced apnea counts in Mecp2-/y mice on postnatal day 15. Cytosine methylation levels in the Gad1 promoter were higher in the RVLM of Mecp2-/y mice compared to wild-type mice born to C57BL/6J females, while VPA treatment decreased the methylation levels in Mecp2-/y mice. Chromatin immunoprecipitation assay revealed that the VPA treatment reduced the binding of methyl-CpG binding domain protein 1 (MBD1) to the Gad1 promoter in Mecp2-/y mice. These results suggest that VPA improves breathing of Mecp2-/y mice by reducing the Gad1 promoter methylation, which potentially leads to the enhancement of GABAergic neurotransmission in the RVLM.


Apnea/etiology , Brain/drug effects , Brain/metabolism , Methyl-CpG-Binding Protein 2/deficiency , Promoter Regions, Genetic , Transcriptional Activation/drug effects , Valproic Acid/pharmacology , Animals , Apnea/drug therapy , Apnea/metabolism , DNA Methylation , Disease Models, Animal , Epigenesis, Genetic , Gene Expression Regulation/drug effects , Mice , Mice, Knockout , Models, Biological , RNA, Messenger/genetics
13.
Int J Mol Sci ; 20(15)2019 Aug 05.
Article En | MEDLINE | ID: mdl-31387202

Rett syndrome (RTT) is a rare, X-linked neurodevelopmental disorder typically affecting females, resulting in a range of symptoms including autistic features, intellectual impairment, motor deterioration, and autonomic abnormalities. RTT is primarily caused by the genetic mutation of the Mecp2 gene. Initially considered a neuronal disease, recent research shows that glial dysfunction contributes to the RTT disease phenotype. In the following manuscript, we review the evidence regarding glial dysfunction and its effects on disease etiology.


Genetic Association Studies , Genetic Predisposition to Disease , Methyl-CpG-Binding Protein 2/deficiency , Neuroglia/metabolism , Rett Syndrome/genetics , Rett Syndrome/metabolism , Animals , Astrocytes/metabolism , Energy Metabolism , Genetic Association Studies/methods , Humans , Oligodendroglia/metabolism , Phenotype , Rett Syndrome/diagnosis
14.
Proc Natl Acad Sci U S A ; 116(32): 16086-16094, 2019 08 06.
Article En | MEDLINE | ID: mdl-31320591

Exosomes are thought to be released by all cells in the body and to be involved in intercellular communication. We tested whether neural exosomes can regulate the development of neural circuits. We show that exosome treatment increases proliferation in developing neural cultures and in vivo in dentate gyrus of P4 mouse brain. We compared the protein cargo and signaling bioactivity of exosomes released by hiPSC-derived neural cultures lacking MECP2, a model of the neurodevelopmental disorder Rett syndrome, with exosomes released by isogenic rescue control neural cultures. Quantitative proteomic analysis indicates that control exosomes contain multiple functional signaling networks known to be important for neuronal circuit development. Treating MECP2-knockdown human primary neural cultures with control exosomes rescues deficits in neuronal proliferation, differentiation, synaptogenesis, and synchronized firing, whereas exosomes from MECP2-deficient hiPSC neural cultures lack this capability. These data indicate that exosomes carry signaling information required to regulate neural circuit development.


Exosomes/metabolism , Nerve Net/metabolism , Neurogenesis , Action Potentials , Animals , Cell Count , Cell Differentiation , Cell Proliferation , Cells, Cultured , Dentate Gyrus/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Methyl-CpG-Binding Protein 2/deficiency , Methyl-CpG-Binding Protein 2/metabolism , Mice , Neurons/cytology , Neurons/metabolism , Signal Transduction , Spheroids, Cellular/cytology , Synapses/metabolism
15.
Gastroenterology ; 157(5): 1398-1412.e9, 2019 11.
Article En | MEDLINE | ID: mdl-31352003

BACKGROUND & AIMS: Methyl-CpG binding protein 2, MECP2, which binds to methylated regions of DNA to regulate transcription, is expressed by hepatic stellate cells (HSCs) and is required for development of liver fibrosis in mice. We investigated the effects of MECP2 deletion from HSCs on their transcriptome and of phosphorylation of MECP2 on HSC phenotype and liver fibrosis. METHODS: We isolated HSCs from Mecp2-/y mice and wild-type (control) mice. HSCs were activated in culture and used in array analyses of messenger RNAs and long noncoding RNAs. Kyoto Encyclopedia of Genes and Genomes pathway analyses identified pathways regulated by MECP2. We studied mice that expressed a mutated form of Mecp2 that encodes the S80A substitution, MECP2S80, causing loss of MECP2 phosphorylation at serine 80. Liver fibrosis was induced in these mice by administration of carbon tetrachloride, and liver tissues and HSCs were collected and analyzed. RESULTS: MECP2 deletion altered expression of 284 messenger RNAs and 244 long noncoding RNAs, including those that regulate DNA replication; are members of the minichromosome maintenance protein complex family; or encode CDC7, HAS2, DNA2 (a DNA helicase), or RPA2 (a protein that binds single-stranded DNA). We found that MECP2 regulates the DNA repair Fanconi anemia pathway in HSCs. Phosphorylation of MECP2S80 and its putative kinase, HAS2, were induced during transdifferentiation of HSCs. HSCs from MECP2S80 mice had reduced proliferation, and livers from these mice had reduced fibrosis after carbon tetrachloride administration. CONCLUSIONS: In studies of mice with disruption of Mecp2 or that expressed a form of MECP2 that is not phosphorylated at S80, we found phosphorylation of MECP2 to be required for HSC proliferation and induction of fibrosis. In HSCs, MECP2 regulates expression of genes required for DNA replication and repair. Strategies to inhibit MECP2 phosphorylation at S80 might be developed for treatment of liver fibrosis.


Chemical and Drug Induced Liver Injury/metabolism , Hepatic Stellate Cells/metabolism , Liver Cirrhosis, Experimental/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Acetaminophen , Animals , Carbon Tetrachloride , Cell Proliferation , Cells, Cultured , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/pathology , Collagen/metabolism , DNA Repair , DNA Replication , Hepatic Stellate Cells/pathology , Liver Cirrhosis, Experimental/genetics , Liver Cirrhosis, Experimental/pathology , Male , Methyl-CpG-Binding Protein 2/deficiency , Methyl-CpG-Binding Protein 2/genetics , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Serine , Signal Transduction
16.
Mol Neurobiol ; 56(12): 8277-8295, 2019 Dec.
Article En | MEDLINE | ID: mdl-31214863

MeCP2 is an X-linked gene; its mutation causes Rett Syndrome (RTT), a severe neurodevelopmental disability that affects mainly girls. Acting as a transcription factor, the MeCP2 protein is able to regulate several hormone-related genes, such as the thyroid hormones (TH), which are known to play an important role in the development of the central nervous system (CNS). Although only a few studies have associated RTT and TH, TH deficit can lead to neurological deregulation by triggering functional deficiencies during adulthood. Here, we used human-induced pluripotent stem cell (iPSC) to generate MeCP2-knockout neuronal progenitor cells and adult neurons. Using this cellular model, we then investigated the expression of genes associated with TH homeostasis, such as the TH transporters (LAT1, LAT2, MCT8, MCT10, and OATP4A1) and deiodinases (DIO1, 2, and 3). Then, we treated the neural cells with THs and analyzed the expression of several genes related to neurodevelopment and functional maintenance. Our results showed that several TH-related genes, such as deiodinases, are altered in RTT samples when compared to WT cells. Moreover, the treatment of the neural cells with THs increased the amount of MAP2 and synapsin-1 expression in RTT cells. Our work provided evidences that TH homeostasis is compromised in RTT-derived neural cells, which could be an important factor to contribute to the imbalance in the neurodevelopmental phenotype presented in this syndrome and can lead us to better understand other neurodevelopmental diseases.


Gene Expression Regulation , Induced Pluripotent Stem Cells/metabolism , Iodide Peroxidase/genetics , Membrane Transport Proteins/genetics , Methyl-CpG-Binding Protein 2/deficiency , Neurons/metabolism , Thyroid Hormones/metabolism , Humans , Iodide Peroxidase/metabolism , Karyotyping , Male , Membrane Transport Proteins/metabolism , Metabolic Networks and Pathways , Models, Biological , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/pathology , Rett Syndrome/enzymology , Rett Syndrome/genetics
17.
Neuroscience ; 397: 107-115, 2019 01 15.
Article En | MEDLINE | ID: mdl-30458221

People with Rett Syndrome (RTT), a neurodevelopmental disorder caused by mutations in the MECP2 gene, have breathing abnormalities manifested as periodical hypoventilation with compensatory hyperventilation, which are attributable to a high incidence of sudden death. Similar breathing abnormalities have been found in animal models with Mecp2 disruptions. Although RTT-type hypoventilation is believed to be due to depressed central inspiratory activity, whether this is true remains unknown. Here we show evidence for reshaping in firing activity and patterns of medullary respiratory neurons in RTT-type hypoventilation without evident depression in inspiratory neuronal activity. Experiments were performed in decerebrate rats in vivo. In Mecp2-null rats, abnormalities in breathing patterns were apparent in both decerebrate rats and awake animals, suggesting that RTT-type breathing abnormalities take place in the brainstem without forebrain input. In comparison to their wild-type counterparts, both inspiratory and expiratory neurons in Mecp2-null rats extended their firing duration, and fired more action potentials during each burst. No changes in inspiratory or expiratory neuronal distributions were found. Most inspiratory neurons started firing in the middle of expiration and changed their firing pattern to a phase-spanning type. The proportion of post-inspiratory neurons was reduced in the Mecp2-null rats. With the increased firing activity of both inspiratory and expiratory neurons in null rats, phrenic discharges shifted to a slow and deep breathing pattern. Thus, the RTT-type hypoventilation appears to result from reshaping of firing activity of both inspiratory and expiratory neurons without evident depression in central inspiratory activity.


Action Potentials/physiology , Medulla Oblongata/metabolism , Methyl-CpG-Binding Protein 2/deficiency , Neurons/metabolism , Respiration , Rett Syndrome/metabolism , Animals , Decerebrate State , Disease Models, Animal , Male , Methyl-CpG-Binding Protein 2/genetics , Phrenic Nerve/metabolism , Rats, Sprague-Dawley , Rats, Transgenic , Wakefulness
18.
Hum Mol Genet ; 28(2): 245-257, 2019 01 15.
Article En | MEDLINE | ID: mdl-30277526

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations or deletions in Methyl-CpG-binding Protein 2 (MeCP2), a brain-enriched transcriptional regulator. MeCP2 is highly expressed during neuronal maturation and its deficiency results in impaired dendritic morphogenesis and reduced dendritic spine numbers in developing neurons. However, whether MeCP2 deficiency impacts the integration of new neurons has not been directly assessed. In this study, we developed a modified rabies virus-mediated monosynaptic retrograde tracing method to interrogate presynaptic integration of MeCP2-deficient new neurons born in the adult hippocampus, a region with lifelong neurogenesis and plasticity. We found that selective deletion of MeCP2 in adult-born new neurons impaired their long-range connectivity to the cortex, whereas their connectivity within the local hippocampal circuits or with subcortical regions was not significantly affected. We further showed that knockdown of MeCP2 in primary hippocampal neurons also resulted in reduced network integration. Interestingly, (1-3) insulin-like growth factor-1 (IGF-1), a small peptide under clinical trial testing for RTT, rescued neuronal integration deficits of MeCP2-deficient neurons in vitro but not in vivo. In addition, (1-3) IGF-1 treatment corrected aberrant excitability and network synchrony of MeCP2-deficient hippocampal neurons. Our results indicate that MeCP2 is essential for immature neurons to establish appropriate network connectivity.


Methyl-CpG-Binding Protein 2/physiology , Nerve Net , Neurogenesis , Neurons/cytology , Animals , Cells, Cultured , Dendrites , Hippocampus/cytology , Hippocampus/drug effects , Insulin-Like Growth Factor I/pharmacology , Male , Methyl-CpG-Binding Protein 2/deficiency , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Inbred C57BL , Neuroanatomical Tract-Tracing Techniques , Neurogenesis/drug effects , Neurons/metabolism , Retroviridae
19.
Cell Rep ; 23(6): 1665-1677, 2018 05 08.
Article En | MEDLINE | ID: mdl-29742424

Rett syndrome (RTT) is the second leading cause of mental impairment in girls and is currently untreatable. RTT is caused, in more than 95% of cases, by loss-of-function mutations in the methyl CpG-binding protein 2 gene (MeCP2). We propose here a molecular target involved in RTT: the glycogen synthase kinase-3b (Gsk3b) pathway. Gsk3b activity is deregulated in Mecp2-knockout (KO) mice models, and SB216763, a specific inhibitor, is able to alleviate the clinical symptoms with consequences at the molecular and cellular levels. In vivo, inhibition of Gsk3b prolongs the lifespan of Mecp2-KO mice and reduces motor deficits. At the molecular level, SB216763 rescues dendritic networks and spine density, while inducing changes in the properties of excitatory synapses. Gsk3b inhibition can also decrease the nuclear activity of the Nfkb1 pathway and neuroinflammation. Altogether, our findings indicate that Mecp2 deficiency in the RTT mouse model is partially rescued following treatment with SB216763.


Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Methyl-CpG-Binding Protein 2/deficiency , NF-kappa B p50 Subunit/metabolism , Rett Syndrome/metabolism , Rett Syndrome/pathology , Signal Transduction , Synapses/metabolism , Animals , Biomarkers/metabolism , Cells, Cultured , Cerebellum/metabolism , Cerebellum/pathology , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Dendritic Spines/pathology , Disease Models, Animal , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Indoles/pharmacology , Inflammation/pathology , Longevity , Maleimides/pharmacology , Methyl-CpG-Binding Protein 2/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Protein Kinase Inhibitors/pharmacology , Survival Analysis , Up-Regulation/drug effects
20.
Stem Cell Reports ; 10(5): 1453-1463, 2018 05 08.
Article En | MEDLINE | ID: mdl-29742391

To determine the role for mutations of MECP2 in Rett syndrome, we generated isogenic lines of human induced pluripotent stem cells, neural progenitor cells, and neurons from patient fibroblasts with and without MECP2 expression in an attempt to recapitulate disease phenotypes in vitro. Molecular profiling uncovered neuronal-specific gene expression changes, including induction of a senescence-associated secretory phenotype (SASP) program. Patient-derived neurons made without MECP2 showed signs of stress, including induction of P53, and senescence. The induction of P53 appeared to affect dendritic branching in Rett neurons, as P53 inhibition restored dendritic complexity. The induction of P53 targets was also detectable in analyses of human Rett patient brain, suggesting that this disease-in-a-dish model can provide relevant insights into the human disorder.


Cellular Senescence , Methyl-CpG-Binding Protein 2/deficiency , Neurons/metabolism , Neurons/pathology , Tumor Suppressor Protein p53/metabolism , Brain/metabolism , DNA Damage , Dendrites/metabolism , Gene Expression Regulation , Humans , Methyl-CpG-Binding Protein 2/metabolism , Models, Biological , Rett Syndrome/pathology , Transcriptome/genetics
...